
U. S. DEPARTMENT OF THE INTERIOR
U. S. GEOLOGICAL SURVEY

Data Acquisition System for Magnetotellurics

by
1

Thomas P. Grover

Open-File Report 92-569
1992

This report is preliminary and has not been reviewed for
conformity with U.S. Geological Survey editorial standards
Any use of trade names in this report is for descriptive
purposes only and does not imply endorsement by the U.S.
Geological Survey.

1
U.S. Geological Survey, Branch of Geophysics, Golden,
Colorado 80401

Abstract

This report describes a data acquisition system
suitable for magnetotellurics. It converts signal voltages
from electrode or coil amplifiers to digital data and stores
the values in local memory. The data is later transferred
via a serial cable to a personal computer under software
control. The personal computer can set measurement
parameters for the data acquisition system thru the same
serial cable. The report includes a technical discussion,
circuit schematics and some code for the software. The
system comprises a single circuit board and is compact,
lightweight, and uses very little power. It can convert 8
channels to 12 bit accuracy at a 2 kHz scan rate. The
circuit uses a Motorola MC68HC811 microcontroller and is
programmable from a personal computer.

The following abbreviations are used in this report:
A/D - Analog to digital converter
BIOS - Built In Operating System
DAS - Data acquisition system
FIFO - First In, First Out memory
1C - Integrated Circuit
MC - microcontroller integrated circuit
PC - Personal Computer
RAM - Random access memory
ROM - Read Only Memory
RS232- Serial data communications link

Introduction

Magnetotelluric surveys of deep formations measure
low frequency electric and magnetic fields by using
electrodes and coils to convert the fields to voltages
(Kaufman and Keller, 1981). The voltages are amplified
with frequency selective circuits to one volt levels. These
waveforms are digitized, stored in a computer and analyzed.
Typical frequencies range from 0.001 Hz to 1000 Hz. The
waveforms are represented by a discrete sequence of samples,
usually a power of 2, typically 1024. Analysis includes
computation of discrete-frequency power-spectral and cross
spectral analysis to derive an earth transfer function,
generally in two dimensions.

We have developed a data acquisition system (DAS)
to provide the interface between the high level signal
voltages and a personal computer (PC)(Swiger and Glover,
1991). The devices communicate via a serial (RS232) link
thereby providing compatibility with many types of computers
(Brey, 1988). The signals are converted to digital data at a
rate dependant on the desired frequency range and sent to the
computer via the serial link. The sampled data is buffered by
local memory in the DAS. When measuring low frequency
signals, the buffer memory is used for only one scan so that
digitized data is sent to the computer and displayed as soon
as all channels are converted. For higher frequencies the
serial link transfer rate prevents real time display of
digitized data.

Based on the needs of magnetotellurics, we have
chosen the following set of system design criteria:

1- Controlled by a personal computer.
2- 4 to 8 signal channels with matched analog

responses.
3- 0.5 Hz to 2 kHz scan rate.
4- 256 to 2048 samples per waveform.
5- Weight less than 2 Ib (16 hour battery pack).

We use a 12 bit analog to digital converter (A/D) but a 16
bit device can be accomodated. There is a single A/D with a
multiplexer to sequentially connect its input to the
individual analog channel signal voltages. This forces us to
have an interchannel time skew; the signal samples are not
acquired at the same time. This skew is acceptable because
the analysis uses frequency spectra, which change very slowly
compared with the waveform acquisition time, but the computer
cross-spectra are generally deskewed in the frequency domain.
Our basic skew is 40 microseconds, independent of the
intersample time. The input range is +10 volts to -10 volts
and can be varied by changing resistors. The serial link
operates at 9600 baud and can be programmed to any common
value below 38 kilobaud.

System Description

A block diagram of the DAS is shown in figure 1. To
elucidate the block functions we will describe an acquisition
sequence. The central microcontroller integrated circuit
(MC), an MC68HC811 from Motorola, contains sequencing code
in its read only memory (ROM). The control program begins
when power is applied and various portions of the code are
executed under PC direction by the receipt of code bytes at
the serial port of the MC.

The MC has four digital ports, A thru D, which are
one byte wide. Port A outputs the multiplexer channel number
on 3 bits. Port B outputs control signals for the A/D, random
access memory (RAM) and address counter. Port C is digital
input from either the A/D or from the RAM. Port D uses 2
bits for the serial link, an input and an output. Level
shifting circuitry converts the 5 volt internal logic levels
to RS232 levels (+5 to -5 volts).

DAS local memory consists of a 32 kilobyte RAM
integrated circuit and a 15 bit up counter, labeled the
'address counter'. The memory size is determined by our
choice of 8 channels X 2 byte per channel X 2048 scans =
32768 bytes. Together these chips constitute a first in,
first out memory (FIFO). The use of a counter to generate
the address for the RAM is a tradeoff between speed and
circuit complexity. The MC68HC811 could compute and output
the 15 bit addresses required by our application, but this
would use up half of the available digital outputs and
increase the intersample time skew. The MC is an 8 bit
device and address generation would take several software
instructions. With the address counter, addresses are
'computed' by clocking the counter, which takes one bit and
two software instructions. The RAM is always loaded and
unloaded sequentially, starting at the first address.

An A/D conversion sequence loads 2 bytes into RAM.
An 8 channel sample or "scan" loads up to 16 bytes into RAM,
i.e. all channels are converted. The scan results may be
transmitted to the PC, if time permits, or scans may be
repeated until the desired number is acquired and then all of
the scans are transmitted to the PC. DAS activity always
begins upon receipt of a code byte from the PC which causes
the address counter to be set to zero and conversion
sequences to begin. Activity always ends with the
transmission of results to the PC, ranging from 8 bytes to 32
kilobytes.

This DAS design uses only part of the MC68HC811's
capability. We feel that overdesign is appropriate for
microcontrollers because the learning curve is rather steep
and a "one size fits all" approach will make the best use of
design time for low volume, cost insensitive systems. The
68HC811 can be run at very low power, has extensive
capabilities and lots of software. Motorola maintains a
bulletin board with assemblers, "C" compilers, floating point
libraries and simulators (Dumas, 1991). No additional
development equipment is needed; the chip can be programmed
from a PC's RS232 port(Motorola Inc., 1988). The

documentation is superb and there are many textbooks
explaining real time microcontroller assembly language
programming (Brey, 1988).

The PC uses two ancillary programs to create and
enter new code in the 6811's read only memory. A Motorola
assembler, ASH.EXE, converts ASCII text source code files to
hexadecimal strings of control code and address
specifications. A bootloader program is built into the
MC68HC811. When the chip is powered up with the boot-line
low, the bootloader program takes control and reads 256 bytes
from the serial port into random access memory within the
chip and transfers control to the first address in the random
access memory. The 256 byte program reads the serial port,
converts the hex strings to binary bytes and stores them in
read only memory. The program to create and download the 256
byte program to the microcontroller memory and to read and
transmit the object files produced by the assembler is
written in BASIC and is available as EELOAD.BAS from
Motorola.

Microcontroller Software

The main loop of the microcontroller software is
shown in the flow diagram of Figure 2. Some of the blocks
shown are discussed in greater detail using the timing
diagram of figure 3. The main loop receives an RS232 byte
from the PC and checks for the characters "A" or "P". If "P"
is received, the next 5 bytes from the PC are loaded and
interpreted as acquisition parameters: interscan time, number
of scans and number of channels. The first two items require
2 bytes each. If "A" is received, the current value of the
interscan time is checked. If it is greater than 50
milliseconds, the "slow scan" routine, which allows real time
display, is executed; otherwise the "fast scan" routine is
done.

The 50 millisecond (20 Hz) interscan time allows
us to transmit 16 bytes with software handshaking at a 9600
baud RS232 rate. This rate needs about 1 millisecond per
byte because each byte uses 11 baud periods when start, stop
and intercharacter bits are included. The software handshake
adds another 16 bytes from PC to DAS with full time offset,
for a total of 32 milliseconds. The PC has about three
milliseconds to process each byte and store it to memory.
Our current routines do not use the software handshake but
synchronization might be necessary for some data processing
programs to avoid loss of data.

The "slow scan" routine zeros the address counter,
sets up the interscan timer interrupt routine and the RS232
interrupt routine. One scan (all channels) is converted and
stored in memory. The address counter is set to zero again
and the results are sent to the PC. The MC then idles,
waiting for an interrupt. If the timer interrupt occurs
before the RS232 interrupt, the routine quits to the main
loop. If the character "C" is received at the serial port
before a timeout occurs the MC waits for the timer interrupt
and then processes another scan.

The "fast scan" routine zeros the address counter,
sets up the InterScan timer interrupt routine and
the number of scans. A scan is converted and stored in
memory. The scan count is decremented and if the count is
nonzero, the MC idles until a timer interrupt occurs,
indicating that another sample should be converted. If the
scan count is zero, the routine repeats the initialization of
the address counter and sets the data count (# channels * #
scans * bytes per channel). The memory contents are then
transmitted to the PC, decrementing the data count at each
byte to check when the memory is empty. When transmission is
completed, the routine returns to the main loop.

Transmission from DAS to PC is currently done as a
continuous stream of bytes to minimize the required time,
which can be as great as 1/2 minute. The MC transfers a byte
from RAM to Port D, waits for parallel to serial conversion,
clocks the address counter, decrements the data count and
checks it for zero and then repeats the process. This
requires the full attention of the PC or an interrupt driven
communication routine to avoid lost data. Note that there is
no header or synchronizing information. If one byte is
missed then all the succeeding bytes are worthless. The PC
has about one millisecond to process each byte.

From the PC operators view, the "fast scan" routine
is less convenient than the slow routine because it imposes a
long waiting time before any results are available and the
results are presented in a single block. The "slow scan"
routine provides results instantly and in an incremental
fashion. In fact, the slow routine can be run continuously
in real time using appropriate PC software. A second
convenient aspect of the slow routine is that it can be
stopped at any time. This is helpful when debugging an
instrument setup.

The conversion loop is the time sensitive portion of
the microcontroller software. It is generally necessary to
combine as many control actions as possible into each
instruction to maximize throughput. This may obscure the
program logic in favor of performance. In general, the
software instruction sequence consists of loading code bytes
to the MC accumulator and storing them to Port B. This
requires 3 microseconds for an MC68HC811 with a 8 Mhz clock.
There are 8 load and store instructions in our conversion
routine plus 16 microseconds for the A/D chip to perform the
conversion yielding our interchannel skew time of 40
microseconds. For 8 channels we need 320 microseconds to
acquire one scan. We chose a minimum interscan time of 500
microseconds (2 kHz) but could have gone as low as 330
microseconds (3 kHz). If less than 8 channels are used the
minimum interscan time can be reduced. Note that these times
are exact, to crystal oscillator tolerances. Unlike personal
computers, the microcontroller does not have background
operating system activity and uncontrolled timer interrupts.
Its internal circuitry also operates certain processes in
parallel with the central processor: RS232 communication and
timers.

Refer to figure 3 for a timing diagram of the

6

activity on the control lines (Port B) during the
conversion of one channel and the storage of 2 bytes to
memory. The vertical lines, numbered I thru 8, refer to the
instant when a new control byte appears at the port.

The sequence begins when the control line for the
A/D is brought low to initiate conversion. The time from I
to 2 is the conversion time for the A/D chip and depends on
the type of analog to digital converter. It is not
represented to scale in the diagram. If the A/D chip
included a sample and hold feature then the time from 1 to 3
would be available for conversion. The time from 1 to 2 is
set with a software delay loop and includes instructions for
incrementing the channel number and testing for the end of a
scan acquisition sequence. If all channels have been
converted, this is the exit point for the routine.

At time 2, the multiplexer channel is changed at
Port A. This allows ample time for the analog output of the
multiplexer to settle to the value of the next channel. If
the settling time is too slow, the results will appear to
have channel to channel crosstalk.

At time 3 the memory write line is brought low in
preparation for latching the data into RAM on the rising edge
of the write waveform. Logically, this could have been
combined with the multiplexer address change at time 2 but
the MC has only one accumulator and it was occupied at time 2
with servicing port A. Data is latched at time 4 and you
will note that the address and A/D control line are stable at
this time as required by the RAM internal logic.

At time 5 the clock line is raised to advance to
the odd numbered addresses used by the high order data bits.
The HiByte line is also the low order address line. The A/D
control line is brought high in preparation for placing the
high order bits on the data bus. At time 6 the clock pulse
is terminated and the falling edge of the A/D control line
waveform causes the A/D to take control of the data bus. The
RAM write line is brought low to prepare to latch the high
order data bits with the rising edge at time 7.

At time 8 the single channel conversion sequence is
completed by clocking the address counter and raising the A/D
control line. This brings the logic levels back to those
which were present before time I. The only net change is
that the address counter has been advanced by two counts.

The source code for the MC68HC811 is shown in
Appendix A and has been heavily commented. It is written in
6811 assembly language and can be compiled with the ASH
program to Motorola hexadecimal code.

Personal Computer Software

This report describes a program which will download
acquisition parameters to the DAS and can display, in
graphical form, the measurement results. This program is
intended for illustration only and does not save the
measurements to disc or perform any analysis. The source
code is in Appendix B and has been written in Borland's Turbo
C version 2 and compiled using the small memory model. The

graphics file EGAVGA.BGI must be in the current directory
when running this program.

The PC software presents menus and decodes
keystrokes to set acquisition parameters and initiate data
acquisition, thereby eliminating the need for complex error
checking. The PC code does some table lookups to create two
byte hexadecimal data for downloading. We will discuss only
the portions of the program which interact with the DAS and
provide other details in the program source code in the
appendix.

Calls to the Built In Operating System (BIOS) are
used for RS232 setup and transmission. These are contained
in subroutines which can be rewritten for direct reading and
writing to the relevant hardware port addresses. It is
assumed that a status byte is available which indicates that
data is ready to be read or that transmission is complete,
and that the serial port has some sort of local memory
arranged in a first-in-first-out fashion and this FIFO is
initialized before reading data from the DAS. Note that some
dialects of BASIC append a newline character to every string
transmitted from the serial port and will cause problems with
our DAS software.

Experimentation disclosed that our BIOS demanded
certain connections at the RS232 connector:

Identification pin # connect to
DCD 1 +5 volts
TX 2 DAS RS-232 input
RX 3 DAS RS-232 output
COMM 5 DAS circuit common (ground)
DSR 6 +5 volts
RTS 7 CTS (i.e. connect pin 7 to pin 8)
CTS 8 RTS

The pin numbers are for a 9 pin connector. Data Carrier
Detect and Data Set Ready are held high to imitate a modem's
response to a valid telephone link connection. Ready to Send
connected to Clear to Send provides a hardware handshake
commonly found in modems.

Figure 4 shows the flow chart for the PC software.
The main loop restores the screen to text mode, transmits the
current set of acquisition parameters as a 6 byte string
whose first character is a f? P ff , displays the main menu,
clears the keyboard buffer and waits for a keypress. If the
key is for parameter selection, a new menu is presented and a
second key press is acquired to determine the operator's
choice. The only error messages are for illegal (i.e. not
on the menu) keypresses.

If data acquisition is selected, the serial port
FIFO is cleared, the screen is set to a graphical display and
the character "A" is transmitted. As each set of scan data
arrives at the serial port it is converted to a pixel and
displayed. For long interscan times the character "C" is
transmitted after each scan is received.

The routine to capture and display signal waveforms
is divided into two loops: the inner one counts channels and

8

the outer loop counts scans. For short InterScan times the
first trip thru the inner loop takes a long time because the
DAS must fill its RAM before sending data. The time to
traverse the inner loop must be less than 1 millisecond to
avoid losing data. When the outer loop is satisfied that all
scans have been received it idles until a key is pressed in
order to allow the operator to examine the waveforms.

The inner loop captures two bytes from the serial
port, left shifts the second one and adds them together to
create a binary offset representation of the data value,
equal to the D/A output. The data is displayed as a pixel
whose vertical position corresponds to the value. The pixel
horizontal position corresponds to the scan number and its
color corresponds to the channel number.

Data acquisition parameters are transmitted as a six
byte string whose first character is a "P". The interscan
time is calculated as the number of 8-microsecond MC clock
ticks and sent as two bytes in hexadecimal. The number of
scans is also sent as two hexadecimal bytes. The last byte
is the number of channels per scan. The serial port status
byte is used to determine if transmission is complete before
sending the following character. If the PC has a
transmission FIFO this step is not necessary.

Circuit Description

Refer to Figure 5 for a circuit schematic. This
schematic has been simplified by the elimination of power
supply and inactive connections. The signal path begins with
the analog multiplexer, a D6508. Its channel selection pins
are driven by port A of the MC. This part uses +15 volt and
-15 volt supplies to accomodate an input range of +10 volts
to -10 volts. If the input signal range is less then +5
volts to -5 volts the multiplexer power consumption can be
reduced by using an all CMOS part, similar to the 4051, which
does not have internal level shifting circuits. The
multiplexer is followed by an operational amplifier to shift
the voltage levels to the range of +5 volts to 0 volts used
by the A/D and to eliminate loading errors due to the
multiplexer internal switch resistance. The resistors
connected to this operational amplifier can be changed to
alter the acceptable input voltage range.

The A/D is a 12 bit unit with an 8 bit data bus
output. It has an internal voltage reference which is used
in the operational amplifier level shifting resistor network.
Its clock is supplied by a 2 MHz square wave output by the
MC. Conversion time is typically less than 12 microseconds.
Many other devices are available which match the
specifications for this chip. There are also several 16 bit
devices available with higher power requirements and slower
conversion times. Some chips require a separate line to
enable the tristate output drivers.

The address counter comprises four 4029 chips with a
common clock, whose 'carry in' inputs are connected to the
'carry out' output of the proceeding device. The ripple
carry time is much less than the instruction cycle time of

the MC. The other half of the memory FIFO is a RAM device,
the MC60LHC256. The output enable signal for the RAM is
developed by inverting the A/D control signal which
eliminates bus contention between the two devices.

The microcontroller wiring is similar to examples
described in the Motorola application literature (Motorola
Inc. 1991). Unused pins are pulled up to +5 volts with 22
kohm resistors and are not shown on the schematic. An
inverter to sharpen the reset signal and discrete circuits
level shift the RS232 signals. The memory map is shown below
(hexadecimal digits):

0000-OOFF variable and stack RAM
1000-103F registers and input/output ports
F800-FFFF Program storage in internal EEPROM

(electrically erasable and
programmable read only memory)

We did not make a special effort to build a low
power system but the following changes will produce a
milliwatt DAS:
1- Use a 4051 multiplexer and a +2.5volt to -2.5 volt input

range.
2- Operate with +5 volt and -5 volt supplies only. Use a

7660 charge pump 1C to generate the -5 volts.
3- use a lower power A/D similar to the Maxim MAX190.
4- Wire the RAM and A/D chip selects into port B and modify

the software to shut down unused portions of the system as
often as possible.

5- In the "slow scan" mode, use an external clock to
restart the 68HC11 at the end of the interscan period.
Place the MC in a stop state after sending each
scan's data.

The circuits were constructed using wire wrap
sockets on a perforated board. There is no ground plane but
the clock wires for the 8 MHz crystal are kept as short as
possible. The only controls on the DAS are a boot/run
switch. A 9 pin D-subminature connector is used for the
RS232 cable.

10

References

Kaufman, A.A., and Keller, G.V., 1981, The Magnetotelluric
Sounding Method: Elsevier, New York, 734 p.

Swiger, F. and Glover, J., 1991, The FS-100 MC68HC11- based
Single Board Computer: Circuit Cellar Ink, v.6,
p. 52-59

Brey, B.B., 1988, Microprocessors and Peripherals: Merrill
Publishing Co., Colombus OH, 567 p.

Technical Literature Department, Motorola Inc., Phoenix, AZ.
Application Note #AN1010 , 1988, MC68HC11 EEPROM programming

from a Personal Computer: 13 p.
Dumas, J., 1991, How to Use the Freeware Bulletin Board

Service: 72 p.
Technical Manual for the MC68HC811E2 Microcontroller: 109 p.

11

Appendix A: Microcontroller Software Source Code

This code is written in the IBM-PC hosted Motorola Freeware
Assembly Language. It is converted to machine code by the
asll.exe assembler.

* mtdas6.asm N sample load ram & write to pc, no pacing
* includes parameter setup and slow sampling
* var time & num of chan output mux chan # on porta
* portb: 0=clk l=zero/cs,en 2=/wr 3=rd/g
* use toc4 as timer.
* pc cmd: 'A' starts acquis and dump, slow or fast depends
* on stime
* 'P' gets parameters, 'C' continues slow sampling

porta
portb
portc
tent
toc4
tmskl
tflgl
tmsk2
baud
sccrl
sccr2
scsr
scdr
*

equates
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ

* initialization;
org
fdb
org
fdb
org
fdb

inbyte
nchan
stime
nsamp
nbyte

org
rmb
rmb
rmb
rmb
rmb

org
Ids
Idx

Idaa
staa
Idaa
staa
Idaa
staa
Idaa

for 68hcll registers
$00 mux chan # on bits 3-6
$04 all other outputs
$03 input
$0e real time clock (int)
$lc output compare 4 time value (int)
$22 timer intr enables
$23 timer intr flags
$24 port a enables, clock prescaler
$2b rs232 baud rate
$2c comm params
$2d enable tx,rx, intr
$2e comm status byte
$2f comm data i/o

; jump vectors,
$fffe
$f800
$ffd6
seri
$ffe2
timi

$0000
1
1
2
2
2

$f800
#$00ff
#$1000

#$03
tmsk2,x
#$30
baud,x
#$00
sccrl,x
#$2c

data area, stack frame
reset vector loc
goto bottom of eprom
rs232 vector loc
rs232 intr routine
output compare 4 vector
toc4 interrupt routine

internal ram
rec'd pc data byte
number of chan +1
s time in 8uS units (int)
samples +1 (int)
2*#samples*#chan

beginning of eprom code
set stack ptr to top of ram
x reg=int reg block

set prescaler to 16
8 uS/count

9600 baud
set baud rate

8 data, no parity, 1 stop
set comm params

tx, rx, rx intr

12

staa sccr2,x enable comm & intr

* temporary setup for #chan, sample time, # samples

*
*
main

mainl

Idaa
staa
Idd
std
Idd
std
Idd
std

Idaa
staa
cli

Idaa
cmpa
bne

cmpa
bne
Idd
cmpd
bcs

main2
main3

*
*
*
rid

*
rldl

sld

wai
bra

Idaa
staa

Idaa
staa
Idd
addd
std
bclr

Idy
clra
staa
Idaa
staa

dey
beq
clrb
incb
cmpb
beq

#$05
nchan
#$007d
stime
#$0201
nsamp
#$0800
nbyte

#$00
inbyte

main loop:
inbyte
#$50
mainl
par am
#$41
main3
stime
#$1800
main2
slid
rid

main

4 channels
nchan=#chan +1

1 mS=125*8uS
stime=$7d

512 samples
nsamp=513
2048 bytes to send
nbyte=2048

setup inbyte

enable maskable interrupts

wait for pc command
get pc code word
compare to 'P'
not equal: stay in main
else go to param load
compare to 'A'
not equal: stay in main
get stime in ace d
compare to $1800, 20 Hz

goto main2 if d < $1800
else goto 1 slow sampling

goto fast sampling
wait for pc xmit
loop forever

load ram with toc4 pacing
initialization
#$00 disable comm intr
sccr2,x rx, tx, rx intr all off

#$10
tmskl,x
tcnt,x
stime
toc4,x
tflgl,x $ef

nsamp

porta,x
#$0e
portb,x

set toc4 intr enable
toc4 intr is on

setup initial value for toc4
add stime to tent
and set output compare val

clear toc4 intr flag

set reg y to # sample +1
set mux to 1st chan
via porta

zero the addr counter
a/d off, ram on

load ram loop, ace b=current mux chan #

rdmp

nchan
rld2

next sample
goto ram dump at last sample
init ace b=0, current chan
next channel
compare ace b to # chan
wait for timer,no more chan

13

Idaa
staa
nop
nop
nop
nop
nop
nop
tba
Isla
Isla
Isla
Isla
staa
Idaa
staa
Idaa
staa
Idaa
staa
Idaa
staa
Idaa
staa
Idaa
staa
Idaa
staa
bra

#$04
portb,x

porta,x
#$00
portb,x
#$04
portb,x
#$0d
portb,x
#$00
portb,x
#$04
portb,x
#$0d
portb,x
#$0c
portb,x
sld

start conv, a/d on
ram off, clr zero & elk

conversion time delay
3 uS

ace a=current mux chan
!bad pin
move chan # to

bits 4-6
and place it on

porta
write to ram, wr low
a/d on, ram oe off

toggle wr hi

clock addr, ram on
clear a/d read

2nd a/d read
ram wr lo, ram oe hi

clear ram write hi
a/d rd lo, ram oe hi

clear a/d read hi
clock addr, ram oe lo

toggle clock lo
& start mux settling

next channel

rld2

rdmp

sdmpl

chkl

end of one sample load to ram
clra set mux to 1st chan
staa porta,x via porta
wai wait for toe4
bra rldl next sample

ram dump routine w/o pacing, count # bytes sent in
reg y
Idaa #$00 turn off the timer intr
staa tmskl,x toc4 is off
Idaa #$2c enable comm intr
staa sccr2,x rx,tx,rx intr enabled
Idy nbyte get # bytes to xmit in reg y
Idaa #$0e zero addr counter
staa portb,x ram on, a/d off
Idaa #$0c toggle zero & elk lo
staa portb,x ram oe lo, a/d rd hi
Idaa portc,x get ram byte
brclr scsr,x $80 chkl chk if xmit done
staa scdr,x send ram byte, clr flag
dey
bne
clra
staa

sdmp2 Idaa

sdmp2

inbyte
main
#$0d

deer count of bytes sent
goto sdmp2 if not done
else done: set ace a=0

clear inbyte
goto main
clock addr hi

14

staa
bra

portb,x
sdmpl

ram on, a/d off
continue ram dump

*
*
*
slid

get one sample with toc4 pacing and rs232 output
pc counts bytes rec'd and continues by receiving 'C'

slldl

initialization
Idaa #$10
staa tmskl,x
Idd tcnt,x
addd stime
std toc4,x
bclr tflgl,x $ef
clra
staa porta,x
staa inbyte
Idaa #$0e
staa portb,x

set toc4 intr enable
toc4 intr is on

setup initial value for toc4
add stime to tent
and set output compare val

clear toc4 intr flag
set mux to 1st chan
via porta

clear rec'd char
zero the addr counter
a/d off, ram on

load ram loop, ace b=current mux chan #

slld2

chan

clrb
incb
cmpb
beq

Idaa
staa
nop
nop
nop
nop
nop
nop
tba
Isla
Isla
Isla
Isla
staa
Idaa
staa
Idaa
staa
Idaa
staa
Idaa
staa
Idaa
staa
Idaa
staa
Idaa
staa

nchan
slld3

#$04
portb,x

porta,x
#$00
portb,x
#$04
portb,x
#$0d
portb,x
#$00
portb,x
#$04
portb,x
#$0d
portb,x
#$0c
portb,x
slld2

init ace b=0, current chan
next channel
compare ace b to # chan
dump one sample if no more

start conv, a/d on
ram off, clr zero & elk

conversion time delay
3 uS

ace a=current mux chan
!bad pin
move chan # to

bits 4-6
and place it on

porta
write to ram, wr low
a/d on, ram oe off

toggle wr hi

clock addr, ram on
clear a/d read

2nd a/d read
ram wr lo, ram oe hi

clear ram write hi
a/d rd lo, ram oe hi

clear a/d read hi
clock addr, ram oe lo

toggle clock lo
& start mux settling

next channelbra
* one sample ram dump routine with pc continuation
slld3 Idab nchan ace b=(#ch+l)

addb nchan ace b=(#ch+l)*2
decb # bytes+1 to xmit

15

Idaa #$0e zero addr counter
staa portb,x ram on, a/d off

slld4 Idaa #$0c toggle zero & elk lo
staa portb,x ram oe lo, a/d rd hi
decb chk for 2*nchan bytes
beq slld6 goto to timeout
Idaa portc,x get ram byte

chk2 brclr scsr,x $80 chk2 chk if xmit done
staa scdr,x send byte to pc, clr flag
Idaa #$0d clock addr hi
staa portb,x ram on, a/d off
bra slld4 continue ram dump

* timeout check for one sample dump
slld6 wai wait for toc4 or comm

Idaa inbyte check inbyte for 'C'
cmpa #$43 if timer, inbyte=0
beq timer if 'C' goto timer
bra slid? else goto quit routine

timer wai wait for timer intr
clra clear ace a
staa inbyte and comm byte
bra slldl and get next sample

* turn off timer intr to quit slow sample load
slid? Idaa #$00 turn off timer intr

staa tmskl,x toc4 disabled
staa inbyte clear rec'd byte
jmp main goto main routine

* routine loads
param wai

Idaa
staa
wai
Idaa
staa
wai
Idaa
staa
wai
Idaa
staa
Idd
addd
std
wai
Idaa
inca
staa
Idd
subd
asld
std
clra
Idab
xgdy
Idd

parameters

inbyte
stime+1

inbyte
stime

inbyte
nsamp+1

inbyte
nsamp
nsamp
#$01
nsamp

inbyte

nchan
nsamp
#$01

nbyte

nchan

nbyte

chan, sample time, # samples
wait for next byte
get stime, lo byte

lobyte to stime +1
wait for next byte
get stime, hi byte

hibyte to stime
wait for next byte
get nsamp, lobyte

lobyte to nsamp +1
wait for next byte
get nsamp, hibyte

hibyte to nsamp
ace d - # samples
add 1 to ace d
nsamp = # samples +1
wait for next byte
get # chan
ace a=# chan + 1
nchan = # chan +1
ace d=# samples +1
ace d = # samples
ace d = 2* #samples
nbyte =2* #samples
ace a=0, hibyte of d
ace b =# chan + 1, d lobyte
reg y = #chan +1
ace d = 2* # samples

16

mult

multl

dey
beq
addd
bra
std
clra
staa

multl
nbyte
mult
nbyte

inbyte
main

deer reg y, loop counter
quit if multiply done
ace d=acc d + nbyte
loop nchan times
nbyte=nchan*2*# samples
ace a =0
clear inbyte
for return to main

* interrupt service routine for the RS232 port
seri Idaa scsr/x read/discard stat byte

Idaa
staa
rti

scdr/x
inbyte

rd byte/ clear com flag
save to int ram

* interrupt service routine for output compare 4
timi Idd toc4/x get current timer value

addd
std
bclr
rti

stime
toc4/x
tflgl/x $ef

add stime to curr time
update output compare val
clear the intr flag

* end of source code for mtdas6.asm

17

Appendix B: Personal Computer Software Source Code

This code is written in the "C" programming language and can
be compiled to an executable file by Borlands's Turbo C
version 2 using the small memory model runtime library.

/* MT-TST4.C loads nsamp samples, nchan chans, at stime */
/* per sample without pacing of the ram dump. Setup */
/* parameters can be selected.
/* displ result on graphics screen, waits for kbhit();
/* note: must have egavga.bgi in curr dir when running

*/
*/
*/

^include <dos.h>
^include <conio.h>
^include <stdlib.h>
tfinclude <graphics.h>

/* lobyte, hibyte: rec'd DAS data ch: keybrd char
/* k,m,n loop: counters quit: boolean to exit routine
/* status: RS232 status byte dat: converted DAS result
unsigned char lobyte, hibyte, ch;
unsigned char nchan=0x04; /* number of chan
unsigned int k, m, n, quit, status, dat;
unsigned int
unsigned int
unsigned int
float tmp;
union REGS regs;
int gdriver=EGA;
int gmode=EGAHI;

nsamp=0x0200;
stime=Ox007D;
rdat[8192];

/*

/* number of samples
/* intersample time
/* storage for rec'd data

temp for conversion
/* BIOS register vars
/* EGAVGA vars for
/* video mode

*/
*/
*/

*/
*/
*/
*/
*/
*/
*/

unsigned int Init232(void);
unsigned int Transmit(char);
unsigned char Receive(void);
unsigned int GetStatus(void);
void BuildScreen(void);
void DataDisplay(void);
unsigned char GetNChan(void);
unsigned int GetSTime(void);
unsigned int GetNSamp(void);
void BuildMenu(void);
void SendParams(void);

/* init RS232 port
/* send one byte
/* read RS232 port
/* read status
/* setup graph display
/* graph DAS results
/* interpret oper choice*/
/* for acquisition
/* parameters
/* setup main menu
/* transmit DAS params

*/
*/
*/
*/
*/
*/

*/
*/
*/
*/

void main(void){
quit=0;
initgraph(figdriver, &gmode,"");
Init232();
while (!quit){

restorecrtmode();
_setcursortype(0);
BuildMenu();
SendParams();
ch=getch(); if (!ch) getch();
ch=toupper(ch);
switch(ch){
case status=GetStatus()&0x0100;

18

while (status) { Receive();
status=GetStatus()&0x0100; }
setgraphraode(EGAHI);
BuildScreen();
Transmit('A');
DataDisplay();
while (!kbhit());
ch=getch(); if (!ch) getch();
_setcursortype(0);
break; }

case 'S': { nsarap=GetNSarap();
SendParams();
break; }

case 'R': { stirae=GetSTirae();
SendParams();
break; }

case 'N': { nchan=GetNChan();
SendParams();
break; }

case 'Q': { quit=l; break; }
default : {textcolor(14); gotoxy(50,4);

cputs("D S M N Q only!");
delay(2000);
gotoxy(30,4);cputs(" ");}

} /* end switch */
} /* end while */
_setcursortype(2);
return;
} /* end main */

unsigned int Init232(void){
regs.h.ah=0; /* initialize comm port */
regs.h.al=OxE3; /*9600 baud, no parity, 1 stop, */

/* 8 data bits */
regs.x.dx=0; /* comm port 1 */
int86(0x14, ®s, ®s);
return regs.x.ax;

unsigned int Transmit (char dat){
regs.h.ah=l; /* send one character */
regs.h.al=dat; /* char to send */
regs.x.dx=0; /* comm port 1 */
int86(0x14, ®s, ®s);
return regs.x.ax;

unsigned char Receive (void){
regs.h.ah=2;
regs.x.dx=0;
int86(0x14, ®s, & regs);
return regs.h.al;

unsigned int GetStatus(void) {
regs.h.ah=3; /* get status word */

19

regs.x.dx=0; /* comm port 1 */
int86(0x14, Sregs, Sregs);
return regs.x.ax;
}

void BuildScreen(void) {
char chnum[17]; /* strings to hold DAS params */
char snum[17];
char ratenura[17];

setcolor(15);
line(50,10,50,310); line(50,160,562,160);
for (k=0; k<ll; k++)

line(45,10+k*30,55,10+k*30);
for (k=0; k<9; k++)

line(50+64*k,155,50+64*k,165);
itoa(nsamp/4,snum,10);
outtextxy(170,168,snum);
itoa(nsamp/2,snum,10);
outtextxy(298,168,snum);
itoa(3*nsamp/4,snum,10);
outtextxy(426,168,snum);
itoa(nsamp,snum,10);
outtextxy(554,168,snum);
outtextxy(25, 6," 5");
outtextxy(25, 36," 4");
outtextxy(25, 66," 3");
outtextxy(25, 96," 2");
outtextxy(25,126," 1");
outtextxy(25,156," 0");
outtextxy(25,186,"-1") ;
outtextxy(25,216,"-2") ;
outtextxy(25,246,"-3");
outtextxy(25,276,"-4") ;
outtextxy(25,306,"-5") ;
for (k=0; k<nchan; k++){

if (k<4) setcolor(k+10); else
setcolor(k-2);

outtextxy(150+50*k,320,"CH");
itoa(k+1,chnum,10);
outtextxy(170+50*k,320,chnum);
}

setcolor(15);
outtextxy(64,0,"#chan=");
outtextxy(152,0,"#samples=");
outtextxy(2 9 2,0,"mS/sample=");
itoa(nchan,chnum,10); outtextxy(116,0,chnum);
itoa(nsarap,snum,10); outtextxy(224,0,snura);
sprintf(ratenum,"%.If",0.008*stime);
outtextxy(376,0,ratenum);
setcolor(14);
outtextxy(200,330,"Press any key \
for the main menu");
return;

20

void DataDisplay(void) {
int color, x; /* display of chan num, horiz loc */
int ndx; /* index in data array */

for (n=0; n<nsamp; n++) {
for (m=0; m<nchan; m++){

status=0;
while (! status)
status=GetStatus() & 0x0100;
lobyte=Receive() ;
status=0;
while (! status)
status=GetStatus () & 0x0100;
hibyte=Receive() ;
ndx=m + nchan*n;
rdat[ndx]=lobyte + hibyte«8;
tmp=(float) (hibyte*256+lobyte);
dat=310-(int)(tmp*0.073);
if (nsamp==256) x=2*n;
if (nsamp==512) x=n;
if (nsamp==1024) x=n/2;
if (m<4) color=10+m; else

colors=m-2;
putpixel(x+50,dat, color) ;
} /* for m */

if (kbhit()) return;
if (stime>0x!800) Transmit ('C') ;
} /* for n */

return;

unsigned int GetNSamp(void) {
int done=0;

textcolor(15);
gotoxy(10,4); putch('D'); gotoxy(10,6) ;

putch('S');
gotoxy(10,8); putch('R'); gotoxy(10, 10) ;

putch('N');
gotoxy(10,12); putch('Q');
textcolor(lO);
gotoxy(50,6); cputs("A 256 samples");
gotoxy(50,7); cputs("B 512 samples");
gotoxy(50,8); cputs("C 1024 samples");
textcolor(12);
gotoxy(50,6); putch('A'); gotoxy(50,7) ;

putch('B');
gotoxy(50,8); putch('C');
while (!done){

ch=getch(); if (!ch) ch=getch();
ch=toupper (ch) ;
switch (ch) {
case 'A': {nsamp=256; done=l; break; }
case 'B': {nsamp=512; done=l; break; }
case 'C': {nsamp=1024; done=l; break;}
default : { textcolor(14);

gotoxy(50,ll);
cputs("A-C only!");

21

break; }
case 'H': { stime=Ox30D4; done=l;

break; }
case 'I': { stime=Ox61A8; done=l;

break; }
case 'J': { stime=OxF424; done=l;

break; }
default : { textcolor(14);

gotoxy(50,16);
cputs("A-G only!");
delay(2000);
gotoxy(50,16); cputs("

} /* end switch */
} /* end while */
return stime;

unsigned char GetNChan(void){
int done=0;

textcolor(15);
gotoxy(10,4); putch('D')
gotoxy(10,6); putch('S')
gotoxy(10,8); putch('R')
gotoxy(10,10); putch('N')
gotoxy(10,12); putch('Q')
textcolor(lO);
gotoxy(50,10);
gotoxy(50,ll);
textcolor(12);
gotoxy(50,10);
gotoxy(50,ll);
while (!done){

ch=getch(); if (!ch) getch()
ch=toupper(ch);
switch(ch){
case
case
default

cputs("A
cputs("B

putch('A'
putch('B'

Four
Eight

Channels");
Channels");

'A'
'B'

done=l;
done=l;

{ nchan=4;
{ nchan=8;
{ textcolor(14);

gotoxy(50,14);
cputs("A,B only!");
delay (2000) ;
gotoxy(50,14); cputs(

} /* end switch */
} /* end while */
return nchan;

break; }
break; }

void BuildMenu(void) {
textcolor (15); textbackground (1) ;
clrscr();
gotoxy(35,2); cputs("Main Menu");
gotoxy(10,4) ;
cputs("Data Acquisition and Display");
gotoxy(10,6); cputs("Sample Size Setup")
gotoxy(10,8);
cputs("Rate of Sampling Setup");

23

delay(2000);
gotoxy(50,ll); cputs("

} /* end switch */
} /* end while */
return nsamp;

unsigned int GetSTime(void) {
int done=0;

textcolor(15);
gotoxy(10,4); putch(
putch('S');
gotoxy(10,8); putch(
putch('N');

'D');

'R');
gotoxy(10,6);

gotoxy(10,10);

2000 Hz");
1000 Hz");

500 Hz");
200 Hz");
100 Hz");
50 Hz");

20 Hz");
10 Hz");
5 Hz");
2 Hz");

gotoxy(10,12); putch('Q');
gotoxy(45,6); cputs("Fill Ram");
gotoxy(60,6); cputs("Immediate");
textcolor(lO);
gotoxy(45,8);
gotoxy(45,9);
gotoxy(45,10);
gotoxy(45,11);
gotoxy(45,12);
gotoxy(45,13);
gotoxy(60,8);
gotoxy(60,9);
gotoxy(60,10);
gotoxy(60,11);
textcolor(12);
gotoxy(45,8);
gotoxy(45,9);
gotoxy(45,10);
gotoxy(45,11);
gotoxy(45,12);
gotoxy(45,13);
gotoxy(60,8);
gotoxy(60,9);
gotoxy(60,10); putch('I');
gotoxy(60,11); putch('J');
while (Idone){

ch=getch(); if (!ch) getch();
ch=toupper(ch);
switch(ch){
case 'A': { stime=Ox003E; done=l;

break; }
case 'B': { stime=Ox007D; done=l i

break; }
case 'C': { stime=OxOOFA; done=l,

break; }
case 'D': { stime=0x0271; done=l /

break; }
case 'E': { stime=Ox04E2; done=l /

break; }
case 'F': { stime=Ox09C4; done=lj

break; }
case 'G': { stime^OxlSeA; done=lj

cputs("A
cputs("B
cputs("C
cputs("D
cputs("E
cputs("F

cputs("G
cputs("H
cputs("I
cputs("J

putch('A'
putch('B'
putch('C'
putch('D'
putch('E';
putch(
putch(
putch(

'F'
'G'
'H'

22

gotoxy(10,10);
cputs("Number
gotoxy(10 / 12);
textcolor(12);
gotoxy(10
gotoxy(10
gotoxy(10
gotoxy(10

,4);
,6);
,8);
,10);

of Channels Setup");
cputs("Quit to DOS");

putch('D');
putch('S');
putch('R');
putch(

gotoxy(10,12);
textcolor(15);
gotoxy(20,16);
gotoxy(10,17);
gotoxy(10,18);
gotoxy(35,18);
gotoxy(10,19);
textcolor(lO);
gotoxy(26,17);
gotoxy(26,18);
cprintf("%.lf"
gotoxy(26,19);
return;

N
putch('Q

);
);

cputs ("Current Setup") ;
cputs(" Sample Size =")
cputs ("Sample Rate =")
cputs ("millisec/ sample")
cputs("Number of Chan=")

cprintf ("%i" ,nsamp) ;

((float) (stime))/125.0)
cprintf ("%!", nchan);

void SendParams(void){
char dat;

status=GetStatus() & 0x0100;
while (status) { Receive();

status=GetStatus() & 0x0100; }
Transmit('P');
status=0;
while (Istatus) status=GetStatus() & 0x4000;
dat = stime & OxOOFF;
Transmit(dat);
status=0;
while (1 status) status=GetStatus() & 0x4000;
dat = stime » 8;
Transmit(dat);
status=0;
while (Istatus) status=GetStatus() & 0x4000;
dat = nsamp & OxOOFF;
Transmit(dat);
status=0;
while (Istatus) status=GetStatus() & 0x4000;
dat = nsamp » 8;
Transmit(dat);
status=0;
while (Istatus) status=GetStatus() & 0x4000;
Transmit(nchan);
return;

24

T
l

I

<-

CD C "1 CD CD CO

O
~ cT

o CD i 1
_

CD (n CD 3

m
ux

a

d
d

r
b

u
s

si
g

n
a

l
in

p
u
ts a
d

d
n

e
ss

co

u
n
te

n
A

d
d
r

R
AM

o
u

tp
u

t

e
n

a
b

le

d
a

ta

b
u
s

z
e
ro

\^
c
lo

c
k

s
V

_

_

_

\w
ri
te

\

__
__

__
__

__
 _\

_ _
__

__
__

__

c
o

n
tr

o
l

b
u

s

R
S

23
2

A
D

B C

68
11

m

e

T
]

CQ C

 ̂ CD ro

D CO

CO o 0)

CD nn

o O IT

0)

R
ea

d
R

S
23

2
po

rt

co
nv

er
t

an
d

st
or

e
to

 R
A

M

st
im

e
>

\
no

0

m
S

ec
?

co
nv

er
t

an
d

se
nd

da
ta

 t
o

P
C

sa

m
p

>0

\

/

=0
tim

er

\

ty
pe

x

R
S

23
2

- - -

0
O

V

\
\

- -

r

_

i-

i-

i_

i_

u

L _ _

L

CD
-, i

s

- -

_

r

1-

1-

u

u

1_

L _

L

Q
\

\

s

- -

r

_

i-

i_

u

u

L

U - - -

L

CD
"D

X

S

- -

1

,

J

\

- \

k

1-

u

u

U 4

L ,

<£

X

\

-

J

,

J

_

00

i_
r\

\-
CD

L_O

u

L_

CN

^ '

Q_
CD

CO

CD
E

O CD
X
D

Figure 3 Timing Diagram

T
]

C
Q

C CD ID

O CO

O CD CD O O

CD

M
ai

n
M

en
u

S
en

d
pa

ra
m

et
er

s

G
et

 D
at

a

G
et

 P
ar

am
s

P
ar

am
et

er

M
en

u

S
en

d
'A

1

S
et

up

G
ra

ph
ic

s

R
ea

d
R

S
23

2

D
ra

w
 P

oi
nt

w
ai

t

Lo
ok

up

V
al

ue

Figure 5 Circuit Schematic

